sábado, 3 de julio de 2010

Curso de Estadísticas. Probabilidades Clase Nº 1 Introducción a la Probabilidad

Introducción a la Probabilidad.





La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento.

Ejemplo: tiramos un dado al aire y queremos saber cual es la probabilidad de que salga un 2, o que salga un número par, o que salga un número menor que 4.

El experimento tiene que ser aleatorio, es decir, que pueden presentarse diversos resultados, dentro de un conjunto posible de soluciones, y esto aún realizando el experimento en las mismas condiciones. Por lo tanto, a priori no se conoce cual de los resultados se va a presentar:

Ejemplos: lanzamos una moneda al aire: el resultado puede ser cara o cruz, pero no sabemos de antemano cual de ellos va a salir.

En la Lotería de Navidad, el "Gordo" (en España se llama "Gordo" al primer premio) puede ser cualquier número entre el 1 y el 100.000, pero no sabemos a priori cual va a ser (si lo supiéramos no estaríamos aquí escribiendo esta lección).

Hay experimentos que no son aleatorios y por lo tanto no se les puede aplicar las reglas de la probabilidad.

Ejemplo: en lugar de tirar la moneda al aire, directamente selccionamos la cara. Aquí no podemos hablar de probabilidades, sino que ha sido un resultado determinado por uno mismo. Antes de calcular las probabilidades de un experimento aleaotorio hay que definir una serie de conceptos:

Suceso elemental: hace referencia a cada una de las posibles soluciones que se pueden presentar.

Ejemplo: al lanzar una moneda al aire, los sucesos elementales son la cara y la cruz. Al lanzar un dado, los sucesos elementales son el 1, el 2, .., hasta el 6.

Suceso compuesto: es un subconjunto de sucesos elementales.

Ejemplo: lanzamos un dado y queremos que salga un número par. El suceso "numero par" es un suceso compuesto, integrado por 3 sucesos elementales: el 2, el 4 y el 6 o, por ejemplo, jugamos a la ruleta y queremos que salga "menor o igual que 18". Este es un suceso compuesto formado por 18 sucesos elementales (todos los números que van del 1 al 18).

Al conjunto de todos los posibles sucesos elementales lo denominamos espacio muestral. Cada experimento aleatorio tiene definido su espacio muestral (es decir, un conjunto con todas las soluciones posibles).

Ejemplo: si tiramos una moneda al aíre una sola vez, el espacio muestral será cara o cruz.
Si el experimento consiste en lanzar una moneda al aire dos veces, entonces el espacio muestral estaría formado por (cara-cara), (cara-cruz), (cruz-cara) y (cruz-cruz).

jueves, 1 de julio de 2010

Curso de Estadísticas. Clase 13 Regresión Lineal

Regresión Lineal



Representamos en un gráfico los pares de valores de una distribución bidimensional: la variable "x" en el eje horizontal o eje de abcisa, y la variable "y" en el eje vertical, o eje de ordenada. Vemos que la nube de puntos sigue una tendencia lineal:










El coeficiente de correlación lineal nos permite determinar si, efectivamente, existe relación entre las dos variables. Una vez que se concluye que sí existe relación, la regresión nos permite definir la recta que mejor se ajusta a esta nube de puntos.












Una recta viene definida por la siguiente fórmula:

y = a + bx

Donde "y" sería la variable dependiente, es decir, aquella que viene definida a partir de la otra variable "x" (variable independiente). Para definir la recta hay que determinar los valores de los parámetros "a" y "b":

El parámetro "a" es el valor que toma la variable dependiente "y", cuando la variable independiente "x" vale 0, y es el punto donde la recta cruza el eje vertical.

El parámetro "b" determina la pendiente de la recta, su grado de inclinación.

La regresión lineal nos permite calcular el valor de estos dos parámetros, definiendo la recta que mejor se ajusta a esta nube de puntos.

El parámetro "b" viene determinado por la siguiente fórmula:








Es la covarianza de las dos variables, dividida por la varianza de la variable "x".

El parámetro "a" viene determinado por:

a = ym - (b * xm)

Es la media de la variable "y", menos la media de la variable "x" multiplicada por el parámetro "b" que hemos calculado.

Ejemplo: vamos a calcular la recta de regresión de la siguiente serie de datos de altura y peso de los alumnos de una clase. Vamos a considerar que la altura es la variable independiente "x" y que el peso es la variable dependiente "y" (podíamos hacerlo también al contrario):

Alumno
Estatura
Peso
Alumno
Estatura
Peso
Alumno
Estatura
Peso
x
x
x
x
x
x
x
x
x
Alumno 1
1,25
32
Alumno 11
1,25
33
Alumno 21
1,25
33
Alumno 2
1,28
33
Alumno 12
1,28
35
Alumno 22
1,28
34
Alumno 3
1,27
34
Alumno 13
1,27
34
Alumno 23
1,27
34
Alumno 4
1,21
30
Alumno 14
1,21
30
Alumno 24
1,21
31
Alumno 5
1,22
32
Alumno 15
1,22
33
Alumno 25
1,22
32
Alumno 6
1,29
35
Alumno 16
1,29
34
Alumno 26
1,29
34
Alumno 7
1,30
34
Alumno 17
1,30
35
Alumno 27
1,30
34
Alumno 8
1,24
32
Alumno 18
1,24
32
Alumno 28
1,24
31
Alumno 9
1,27
32
Alumno 19
1,27
33
Alumno 29
1,27
35
Alumno 10
1,29
35
Alumno 20
1,29
33
Alumno 30
1,29
34

El parámetro "b" viene determinado por:

b =
(1/30) * 1,034

-----------------------------------------
= 40,265
(1/30) * 0,00856

Y el parámetro "a" por:

a = 33,1 - (40,265 * 1,262) = -17,714

Por lo tanto, la recta que mejor se ajusta a esta serie de datos es:

y = -17,714 + (40,265 * x)

Esta recta define un valor de la variable dependiente (peso), para cada valor de la variable independiente (estatura):

Estatura
Peso
x
x
1,20
30,6
1,21
31,0
1,22
31,4
1,23
31,8
1,24
32,2
1,25
32,6
1,26
33,0
1,27
33,4
1,28
33,8
1,29
34,2
1,30
34,6